Meeting Logistics

Local Participants:
- World Trade Center facility
- Wireless internet access
 - Network: 2WTC_Event
 - Password: 2WTC_Event$
- Sign-in sheets

Virtual Participants:
- Ask questions via ‘chat’ feature
- Meeting will stay open during breaks, but will be muted
- Electronic version of presentation: portlandgeneral.com/irp

>> Integrated Resource Planning
First things first…

The Power of Love!

Source: primarygames.com
Safety Moment

Slips, Trips, and Falls
Today’s Roundtable Topics

- Welcome / Safety Moment
- 2019 IRP
- Portfolio Construction
 - Break (15 minutes)
- Futures and Uncertainties
- Flexibility Assessment Methodology
 - Lunch (30 minutes)
- Decarbonization Study
- Market Study
 - Break (15 minutes)
- Customer Insights
- Next Steps/Wrap-up
2019 IRP Kick-Off

Elaine Hart
Integrated Resource Planning

The purpose of the IRP process is embedded within the OPUC IRP Guidelines

• OPUC Order No. 07-047
 Guideline 1(c)
 ▪ “The primary goal must be the selection of a portfolio of resources with the best combination of expected costs and associated risks and uncertainties for the utility and its customers.” pp. 1-2.

• OPUC Order No. 17-386

 ▪ “Our IRP guidelines and policies continue to provide the necessary framework to address these new challenges… How utilities characterize need and assess risk and uncertainty within their IRPs and how we integrate that analysis into our review, however, must evolve.” p. 14
Details from OPUC Order 17-386

Resource Adequacy
- Treatment of market capacity
- Flexible capacity and curtailment metrics
- Risks associated with Direct Access

Renewable Resources
- Incorporate a glide path analysis
- Conduct a decarbonization study
- Assess resources from Montana and hold workshop to explore transmission issues

Energy Efficiency
- “PGE will make available the Energy Trust's energy efficiency forecast data and provide an explanation of their model in the company's next IRP.” p. 8

Demand Response
- “hire a third party to conduct a study for demand response specific to PGE's service territory with results in time to inform PGE's subsequent IRP” pg. 9

Other
- Load forecasting methodology improvements and workshops
- Scoring metrics workshops
- Distributed energy resource forecasting
- Customer Insights Study
Stakeholders’ Values

Raw expressed Values from RoundTable 17.3 – Word Cloud
Stakeholders’ Values

Sorted expressed Values from RoundTable 17.3 – Word Cloud
Stakeholders’ Values

Categorized Values

Fairness & Transparency
- Authentic concern
- Sincere consideration of all feedback
- No duplicative metrics
- Transparency in development and process
- Accountability
- Early determination of metrics weighting as part of the Stakeholder process

Sustainability
- Sustainable, Healthy and Safe future for all generations
- Long Term vision anticipating sustainability requirements
- Climate impact
- Keeping fossil fuels, nuclear and biomass out of the mix
- Consistent with Portland’s 100% renewable goals
- A clear path to Decarbonization

Cost and Risk
- Least cost, least risk
- Balancing cost, risk and benefits
- Lowest cost to customers
- Leveraging customer capabilities
- Leveraging AMI assets
- Fuel mix
- Fuel price stability
- Effective in differentiating portfolios
Stakeholders’ Values

Categorized Values

Reliability & Resiliency

- Consider NERC definition of Resiliency
- Reliability is Assumed as foundational

Incrementalism & Optionality

- Flexibility for the future
- Optionality for the future
Stakeholders’ Values

Your Values are embedded in our Process

Foundational principles and values
Stakeholder values: environmental goals, customer perspectives, transparency
Corporate values: reliable, clean, affordable, flexible
Federal, state, and local regulations
Key Themes

Outcome of PGE brainstorming

Technology integration & flexibility

Customer Participation & Preferences

Decarbonization

Uncertainty, optionality, and incrementalism
Key Themes

Outcome of PGE brainstorming

Consumer Technology Adoption
(Behind-the-meter solar, storage, electric vehicles)

Distributed resources
(Distributed solar, storage, Demand response)

Customer Options
(TOU rates, Green Tariffs, Direct Access)

Customer Participation & Preferences

Community Goals
(City of Portland & Multnomah County Resolutions)
Key Themes

Outcome of PGE brainstorming

Renewable Integration
How much does it cost to integrate renewables?

Flexible Resource Value
How much do we value flexibility from storage and other flexible resources?

Flexibility Adequacy
How much flexibility does the system need?

Technology integration & flexibility

Infrastructure support for distributed resources
How much DER can the grid handle?
What will be needed to integrate new technologies like electric vehicles?
Key Themes
Outcome of PGE brainstorming

Economy-wide decarbonization
How might decarbonization of other parts of the energy economy (e.g., electric vehicle adoption) impact the PGE system?

PGE’s 2050 goal
How should PGE treat its greenhouse gas goals in long-term planning?

Community Goals
(City of Portland & Multnomah County Resolutions)

Customer Goals
How should PGE plan for customers who may choose to decarbonize faster?
Key Themes

Outcome of PGE brainstorming

Types of uncertainty
Uncertainty in cost, price (technology change, policy uncertainty)
Uncertainty in need (load forecast, QFs, Direct Access)

Treatment of uncertainty
How can proposed near-term actions better address long-term uncertainties?

Optionality
How can portfolios be designed to value optionality?

Incrementalism
Is there inherent value to incrementalism?
How should the IRP consider year-on-year cost impacts?
Stakeholder Feedback

What are your top priorities for the 2019 IRP?

• Methodological focus?

• Technology focus?

• Frameworks and communication?
PGE aims to complete the bulk of the analysis for the 2019 IRP during 2018. Stakeholder engagement during this time will be critically helpful.

PGE aims to devote more time in the 2019 IRP for engagement on the Action Plan prior to filing.

Target filing near end of Q2, 2019.
Portfolio Construction

Elaine Hart
IRP Modeling Process

- Portfolios are developed relatively late in the analytical process, but PGE is working to enhance the portfolio construction methodology now.
Portfolio construction

The 2016 IRP revealed opportunities to improve upon PGE’s methodology

2016 IRP methodology

• PGE hand-designed portfolios to investigate specific resource economic questions
 ▪ Wind versus solar resources
 ▪ Efficient Capacity versus high heat rate, low capital cost (Generic Capacity) resources
 ▪ Value of Montana Wind relative to Gorge Wind
• Subject to resource need constraints
 ▪ Resource adequacy requirement (2.4 loss of load hours per year)
 ▪ RPS requirement & minimum REC bank requirement

Topics of discussion in 2016 IRP

• Incorporation of an optimal capacity expansion model to design portfolios?
• Consideration of portfolios that change with resource needs (i.e. different portfolios for low versus high load forecast futures)?
Capacity Expansion Modeling

<table>
<thead>
<tr>
<th>Challenges</th>
<th>Potential Solutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capacity expansion models do not always yield sufficiently differentiated portfolios</td>
<td>Use capacity expansion to supplement, but not replace hand-specified portfolios. This will allow PGE to investigate portfolios that are not “economically optimal” to gain additional insights and to model some stakeholder portfolios.</td>
</tr>
<tr>
<td>Capacity expansion models do not always account for PGE’s specific design constraints (e.g., REC banking logic)</td>
<td>Incorporate AURORA dispatch solution into off-board optimal capacity expansion model that includes PGE’s REC constraints.</td>
</tr>
</tbody>
</table>

PGE is in the process of building a simple off-board optimal capacity expansion model to use with AURORA and with hand-specified portfolio constraints to produce portfolios for 2019 IRP.
ROSE-E generates optimized portfolios, automates portfolio design based on user-specified constraints, and simulates REC bank management.
ROSE-E Formulation

Linear Programming model, written in GAMS, with an Excel UI

- **Solves for:**
 - Resource build-out and REC retirement by year
- **Given:**
 - Resource needs (load, capacity, energy, RPS requirements)
 - Resource costs and dispatch from AURORA
 - ELCC curves from RECAP
- **Objective function**
 - Minimize NPVRR of portfolio costs in a given future (or)
 - Minimize Expected NPVRR across futures
- **Constraints**
 - Resource adequacy (capacity need and resource ELCCs)
 - RPS requirements
 - REC bank constraints (5-yr versus infinite-life RECs)
 - User-designed constraints to force in specific resources or test hypotheticals
ROSE-E Example
Optimal portfolio for randomly-generated system
ROSE-E Example

Optimal portfolio for randomly-generated system

Capacity Contributions

RPS Generation

Wind

Solar

Generic Capacity
ROSE-E Example: Capacity and Energy Additions
ROSE-E Example:

REC Accounting
Future-Specific Portfolios

- In the 2016 IRP, all portfolios were designed to meet resource adequacy and RPS requirements under Reference Case conditions.
- In the 2019 IRP, PGE may model portfolios that are specific to different futures.

<table>
<thead>
<tr>
<th>Challenges</th>
<th>Potential Solutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Need to be careful to ensure that cost comparisons are appropriate (e.g., portfolio costs for a low load portfolio should not be directly compared to portfolio costs for a high load portfolio)</td>
<td>Address this issue in designing scoring metrics</td>
</tr>
<tr>
<td>Potentially increases problem size substantially</td>
<td>Consider future-specific portfolios in a way that prioritizes learning regarding impacts of uncertainty and optionality</td>
</tr>
</tbody>
</table>
Portfolios and Futures

Portfolio design can incorporate futures in different ways

- Each future has different resource needs
- A capacity expansion model (like ROSE-E) can provide portfolios that account for this in different ways
 1. Simple future-specific portfolios
 2. Stochastic portfolios
 3. Flexible portfolios

![Diagram showing existing resources and three future scenarios](image-url)
1. Simple future-specific portfolios

Find the optimal portfolio for each future

...okay, but how does this help inform the Action Plan?
2. Stochastic portfolios

Find the optimal portfolio (on an expected basis) across a set of multiple futures

...but wouldn’t we change course at some point if we end up in one of these futures?
3. Flexible portfolios

Find the optimal portfolio for the Action Plan years, allowing the portfolios to change in later years by future conditions.

This provides a single portfolio for the Action Plan window and inherently values optionality for future years.
The possibilities are endless…

…and yet we must complete the 2019 IRP

In the coming weeks, PGE will be drafting a framework for designing portfolios for the 2019 IRP that includes both hand-specified portfolios and optimized portfolios.

We’ll need your help to:

• Identify key portfolios or questions of interest
• Provide feedback on our proposed framework
• Provide feedback on the use of ROSE-E to help design portfolios

▪ Ex: Should we devote a more detailed Technical Meeting to describe and demonstrate ROSE-E?
Futures and Uncertainties

Kate, Sima, Jessie
Outline

- Review 2016 IRP Futures
- Feedback from 2016 IRP
- 2019 IRP Uncertainties and Risk
 - Need Assessments
 - Fixed Costs
 - Variable Costs and Energy Value
- Feedback and Next Steps

“Prediction is difficult, especially about the future.”

Niels Bohr and others
IRP Modeling Process

In the 2016 IRP, uncertainties were primarily factored in the Resource Options and Futures processes.

Foundational principles and values
Stakeholder values: environmental goals, customer perspectives, transparency
Corporate values: reliable, clean, affordable, flexible
Federal, state, and local regulations
2016 IRP Futures

- WECC-wide CO₂ tax forecast by Synapse for Reference and High carbon futures
- Low carbon future based on existing programs only.
- Low gas future added in response to data request
- Varied portfolio energy need
- Additional sensitivities: capital costs, capacity factors, low hydro
2016 IRP Feedback

Need Assessment Uncertainties
- Load forecast methodology
- Distributed solar adoption
- Direct access assumptions
- Energy efficiency

Treatment of Existing Regional Resources
- Availability
- Cost

New Resource Cost
- Solar capital costs
- Economic life
- Planning horizon

Short-Term vs. Long-Term Uncertainties
- Balance of near-and long-term
- Assessment of long-term risks
Let’s first brainstorm about uncertainties in the need assessment, then discuss some considerations . . .
Uncertainties in Need Assessments

Resource Need:
- Capacity
- Energy
- RPS
- Flexibility

Stakeholder thoughts regarding uncertainties in need assessments...
Uncertainties in Need Assessments

Load
- Economic factors
- Weather factors
- Customer choice

Resources
- Qualifying facilities
- Availability of existing regional resources
- Weather conditions
- Renewables RFP
- Energy storage

Adoption of Distributed Technologies
- Energy efficiency
- Demand response / smart load
- Distributed solar
- Distributed batteries
- Electric vehicles

Regulation
- Environmental
- Resource adequacy requirements
Uncertainty Considerations in Need Assessment

Uncertainty Considerations:

• Types of impact
• Magnitude
• Changing characteristics over time
• Correlations
• Impact in Action Window

![Graph showing hypothetical impact with magnitudes and years 2021 to 2023]
Uncertainty Inputs in Portfolio Construction

- Multiple uncertainties
- Identify

- Grouping
- Prioritize
- Boundaries
- Learn

- Upper/lower bounds
- Key cases
- Portfolio Construction
Uncertainties in Fixed Costs

Stakeholder thoughts regarding uncertainties in estimated fixed costs...

Fixed costs include capital costs and fixed operating and maintenance costs.
Uncertainties in Fixed Costs

Technology
- Overnight capital cost
- Maturity outlook
- Tech vs. Tech

Financial Parameters
- Inflation
- Taxes
- Cost of Debt
- Return on Equity
- Economic Life

Fixed O&M
- O&M
- Transmission
- Transportation
- Distribution system costs

Regional Resources
- Long-term cost
- Short-term / mid-term cost

Regulation
- Environmental costs
- Permitting costs
Capital Cost Figures

Hypothetical Fixed Costs Example

Real $/kW versus Year

- A Fixed Cost–High
- A Fixed Cost–Ref
- A Fixed Cost–Low
- B Fixed Cost–High
- B Fixed Cost–Ref
- B Fixed Cost–Low
Stakeholder thoughts regarding uncertainties in estimated variable costs and energy values...

Uncertainties in Variable Costs & Energy Value

Variable costs include commodity costs, variable operating and maintenance costs, and environmental costs that vary with dispatch.

Energy value indicates the wholesale market value of a resource’s generation.
Uncertainties in Variable Costs and Energy Value

Commodity Costs
- Natural gas
- Coal

Environmental Costs
- CO2
- Other (Water, SOx, NOx)

Variable Plant
- Cycling costs
- Start costs
- Other O&M
- Royalties

Weather
- Hydro
- Wind
- Solar

Regulation
- RPS
- Environmental Reliability Requirements

Markets
- Structures
- Curtailment
- Wholesale prices
Gas and Carbon

Gas and CO\textsubscript{2} Price Forecasts from the 2016 IRP
Wholesale Market Prices

Potential Uncertainties Captured in AURORA

- 3 CO_2
- 3 Hydro Conditions
- 3 Gas Prices
- 2 WECC-Wide Resource Portfolios

- A wide range of Futures
- In-depth narrative scenarios
IRP Modeling Process

In the 2019 IRP, uncertainties will be factored in a broader range of the IRP process.

Foundational principles and values
- Stakeholder values: environmental goals, customer perspectives, transparency
- Corporate values: reliable, clean, affordable, flexible
- Federal, state, and local regulations
Next Steps

Stakeholder Inputs

- Stakeholders provide inputs regarding their consideration of uncertainties
- Examples: priorities, suggestions for treatment in analysis

PGE Analytical Steps

- Apply sensitivities to need assessments
- Continue to develop treatment of uncertainties in portfolio construction
- Define cost inputs to Aurora to develop price futures
- Develop portfolio evaluation process across uncertainties
Flexibility Assessment Methodology

Vijay
Background

- Intermittent nature of renewables coupled with their large forecast errors stress utility system operations, increasing the need for fast ramping and quick start/stop units.

- As PGE’s portfolio continues to incorporate more renewable resources and capacity contracts to meet state RPS mandate and action plan directives, there is a need to analyze the new flexibility need of PGE portfolio.

- While there is no industry standard methodology for flexibility analysis, PGE intends to build on the learnings from 2016 IRP and make use of internal models to study the flexibility need.
Resource Optimization Model

- Originally developed to study wind integration costs as a result of 2009 IRP
- Several iterations with a technical review committee oversight
- A multi-stage unit commitment and economic dispatch model

- Used to support IRP, General Rate Case/Annual Update Tariff proceedings, conduct internal economic analysis.
- Currently scoping the flexibility adequacy analysis, which includes defining
 - Flexibility Metrics
 - Portfolios
 - Market Access

![Diagram showing the three stages of resource optimization: Day-Ahead, Hour-Ahead, Within-Period.](Image)
Decarbonization Study

Evolved Energy Research
Decarbonization Study

- In the 2016 IRP, stakeholders expressed interest in seeing portfolios that meet more aggressive long term GHG targets
 - State of Oregon economy-wide goal: 75% below 1990 levels by 2050
 - City of Portland and Multnomah County resolutions: 100% clean & renewable electricity by 2035; 100% economy-wide clean & renewable energy by 2050
- PGE has engaged a consultant (Evolved Energy Research) to develop three scenarios that meet aggressive carbon emissions targets in PGE’s service area by 2050
 - High Electrification
 - Low Electrification
 - High Distributed Energy
Key Questions

- How might energy services be met in PGE’s service area in a decarbonized future?

- What are the potential implications for future electricity demands?
 - Both magnitude and shape of demand

- How much renewable infrastructure will be needed to support economy-wide decarbonization?

- What are the high level balancing challenges and solutions that may be relevant in a highly decarbonized future?

- What are the potential costs to our customers given today’s technological outlooks?
Stakeholder Engagement

Consultant to present draft findings to stakeholders today

PGE will seek input from stakeholders regarding how the study findings could be incorporated into the next IRP in a future roundtable meeting.
Portland General Electric Decarbonization Study: Summary of Draft Findings
Portland General Electric
Decarbonization Study:
Summary of Draft Findings

Presented To:
PGE Integrated Resource Planning Roundtable Meeting

Presented By:
Gabe Kwok and Ben Haley

February 14, 2018
Agenda

• Study Purpose and Scope
• Assumptions and Approach
• Scenarios
• Results
 • Energy Economy
 • Electricity System
• Study Conclusions
Study Purpose and Scope
Motivation

Decarbonization Timeline

Customer and stakeholder feedback, alongside a broad spectrum of goals and policies at all levels, is driving an interest in how to achieve economy-wide decarbonization.
• Portland General Electric (PGE) commissioned EER to undertake an independent study exploring pathways to deep decarbonization for its service territory
 • First deep decarbonization study for a utility service territory
• Questions posed:
 • What are the opportunities and challenges to achieve economy-wide deep decarbonization?
 • What are the implications on the electricity sector?
• Approach
 • We designed and evaluated three future energy scenarios that achieve steep reductions in energy-related CO₂ emissions
Scope

Geography
- PGE service territory
- Rest of Oregon

Energy Types
- All energy types (gasoline, hydrogen, etc.)
- N/A

GHG Emissions
- Energy-related CO₂ (combustion of fossil fuels)
- Non-energy CO₂ (ex., ind. process emissions)
- Non-CO₂ GHGs (ex., CH₄ and N₂O)

N/A
Interpreting Results: What the Study Is and Is Not

What the Study Is

- Independent analysis exploring credible and plausible future energy scenarios
- Study is based on scenario (what-if) analysis
 - Scenario design is a user input
- Scenarios outline potential sources and demands for energy types over time
- Results illustrate different approaches to achieve deep energy-related CO₂ emissions reductions
- Provides insights into how economy-wide change affects electricity planning and operations

What the Study Is Not

- Scenarios are not a forecast of the future
 - We are not predicting future outcomes or assigning probabilities to scenarios
- Scenarios are not prescriptive
 - We are not recommending specific pathways
- Scenarios included in the study are not exhaustive
 - Thousands of plausible alternatives exist
- Scenarios do not reflect PGE’s business plan or future resource acquisitions
- Study’s modeling approach and results do not replace existing tools or processes used in IRP, cost-effectiveness evaluation, etc.
Study Emissions Targets

- Context is Oregon’s on-going GHG cap-and-trade discussions
 - 45% reduction below 1990 levels by 2035
 - 80% reduction below 1990 levels by 2050
- Applied emissions reductions only to energy CO$_2$
- Allocated state-wide budget to PGE service territory using its share of state’s population (45-47% of total)
- PGE service territory’s carbon budget
 - 11.7 million metric tons (MMT) by 2035
 - 4.3 MMT by 2050
- Between 1990-2050, per capita energy CO$_2$ emissions decrease from 16.0 tCO$_2$ to 1.6 tCO$_2$/person
Study Approach and Assumptions
What are Pathways?

Pathway:
Plan or blueprint to achieve deep decarbonization of the energy system
Modeling Approach

• **EnergyPATHWAYS model**
 - Economy-wide energy model that tracks all energy infrastructure, including its demand, emissions and costs
 - Characterizes rollover of infrastructure over time
 - Estimates energy demand from the “bottom-up”

• **Approach to reduce emissions**
 - Specify new low-carbon and efficient infrastructure to replace retiring infrastructure and meet growth in energy service demand

• Model and approach have been used to analyze deep decarbonization for the U.S., Washington State and other jurisdictions
EnergyPATHWAYS Electricity Dispatch

- **Bottom-up load shape**
 - Accounts for electrification

- **Hourly electricity dispatch**
 - Thermal resources
 - Dispatchable hydro resources
 - Energy storage
 - Flexible end-use demand
 - Automated load shifting
 - Examples: smart EV charging and water heating
 - Flexible electric fuel production
 - Load from electrolysis to produce hydrogen and power-to-gas facilities to produce SNG
Key Assumptions

• **Consistent activity levels**
 • Population and economic activity continue to grow
 • Deliver the same level of energy services

• **Natural stock rollover**
 • Energy infrastructure and equipment is replaced at the end of its natural life
 • There are no early retirements

• **Realistic technology deployment**
 • Use commercial or near-commercial technologies

• **Power system reliability**
 • Hourly dispatch to ensure adequate capacity

• **Environmental sustainability**
 • Limit the supply of biomass for energy use
Bioenergy for Liquid Fuels and Pipeline Gas

• Biomass is key to deep decarbonization due to its versatility
 • Can directly replace fossil fuels
• Supply of net-zero carbon biomass is scarce
 • Source for availability and cost of sustainable biomass is U.S. DOE’s 2016 Billion-Ton Report

<table>
<thead>
<tr>
<th>Assumption</th>
<th>Implication</th>
</tr>
</thead>
<tbody>
<tr>
<td>PGE service territory’s allocation of net-zero biomass is population-weighted share of national supply</td>
<td>Biomass limit is 7.3 million dry tons (MDT), which is ~450 million gallons diesel fuel</td>
</tr>
<tr>
<td>Biomass feedstock is net-zero carbon</td>
<td>Biofuels have very low emissions rates, with some emissions from non-bioenergy use in conversion/refining</td>
</tr>
<tr>
<td>Other jurisdictions in the U.S. pursue similar biomass-related actions</td>
<td>Cost of producing and consuming biofuels reflects movement up the supply curve</td>
</tr>
</tbody>
</table>
Data Sources

Compiled data from recent publicly-available sources

<table>
<thead>
<tr>
<th>Category</th>
<th>Source(s)</th>
</tr>
</thead>
</table>
| Electricity Resource Technologies| • PGE Integrated Resource Plan (DNV GL)
 • NREL Annual Technology Baseline 2017
 • EIA Form 923 |
| End-Use Technologies | • Input data for EIA's National Energy Model System (NEMS) used to produce Annual Energy Outlook (AEO)
 • NREL Electrification Futures Study: End-Use Electric Technology Cost and Performance Projections |
| Existing Building Stock | • PGE Residential Appliance Saturation Study
 • Northwest Energy Efficiency Alliance (NEEA) Residential and Commercial Building Stock Assessment reports |
| Fossil Fuel Prices | • EIA AEO 2017 |
| Miscellaneous | • System load profiles: FERC Form 714
 • Oregon vehicle miles traveled: 2017 Oregon Highway Cost Allocation Study
 • Population projection: Oregon Office of Economic Analysis
 • Bioenergy supply cure: DOE 2016 Billion-Ton Report |
Overview

• Designed three energy scenarios that transition towards a low carbon future
 • These scenarios are referred to as **deep decarbonization pathways**
• Key objective of scenario design is to reflect broad range of outcomes for the electricity system
• Also developed a Reference Case to compare the three pathways against
A continuation of current and planned policy, and provides a benchmark against the deep decarbonization pathways

- **High Electrification**
 - Fossil fuel consumption is reduced by electrifying end-uses to the extent possible and increasing renewable electricity generation

- **Low Electrification**
 - Greater use of renewable fuels, notably biofuels and synthetic electric fuels, to satisfy energy demand and reduce emissions

- **High DER**
 - Distributed energy resources proliferate in homes and businesses, which also realize higher levels of electrification
Electricity Resource Assumptions

Values by 2050 Unless Specified Otherwise

<table>
<thead>
<tr>
<th></th>
<th>High Electrification</th>
<th>Low Electrification</th>
<th>High DER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electricity Supply</td>
<td>Coal Boardman ceases operations by end of 2020; Colstrip 3&4 out of resource mix by 2035</td>
<td>Gas Maintain current fleet</td>
<td></td>
</tr>
<tr>
<td>Hydro</td>
<td>Hydro Extend projected hydro contracts through 2050 (933 MW); additional 23 MW of small hydro</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geothermal</td>
<td>Geothermal 500 MW addition</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Utility-scale Wind and Solar PV</td>
<td>Utility-scale Wind and Solar PV 75% electricity generation; includes onshore wind in PNW and Montana & solar PV in central OR; MW varies with load requirements</td>
<td>67% electricity generation</td>
<td></td>
</tr>
<tr>
<td>BTM Solar PV</td>
<td>BTM Solar PV 405 MW<sub>ac</sub></td>
<td></td>
<td>2,550 MW<sub>ac</sub></td>
</tr>
<tr>
<td>Balancing Resources</td>
<td>Energy Storage Proposed energy storage resources (36 MW / 160 MWh)</td>
<td>Energy Storage 1,000 MW of bulk 8-hour storage</td>
<td>2,550 MW of dist. 6-hr storage</td>
</tr>
<tr>
<td>Flexible Electric Fuel Loads</td>
<td>Flexible Electric Fuel Loads Excluded</td>
<td>Flexible Electric Fuel Loads Hydrogen (H2) electrolysis & power-to-gas (P2G) production facilities</td>
<td>Excluded</td>
</tr>
<tr>
<td>Flexible End-use Loads</td>
<td>Flexible End-use Loads Portion of electric load from select end-uses is flexible (ex., smart EV charging and water heating) Capability varies depending on the level of end-uses that are electrified</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Summary of Key Scenario Assumptions

Primary Technology or Approach by 2050

<table>
<thead>
<tr>
<th>Energy Supply</th>
<th>High Electrification and High DER</th>
<th>Low Electrification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pipeline Gas</td>
<td>No change</td>
<td>Decarbonized with renewable natural gas (RNG), hydrogen (H2) and synthetic natural gas (SNG)</td>
</tr>
<tr>
<td>Liquid</td>
<td>Renewable diesel and jet fuel</td>
<td>Renewable diesel and jet fuel</td>
</tr>
<tr>
<td>Transportation Fuels</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Buildings</td>
<td>Space Conditioning</td>
<td>Liquid Transportation Fuels</td>
</tr>
<tr>
<td></td>
<td>Air source heat pump</td>
<td>Renewable diesel and jet fuel</td>
</tr>
<tr>
<td></td>
<td>High efficiency gas furnace</td>
<td>High efficiency gas water heater</td>
</tr>
<tr>
<td></td>
<td>High efficiency air conditioner</td>
<td>High efficiency gas water heater</td>
</tr>
<tr>
<td>Water Heating</td>
<td>Heat pump water heater</td>
<td>High efficiency gas water heater</td>
</tr>
<tr>
<td>Lighting</td>
<td>LED</td>
<td>LED</td>
</tr>
<tr>
<td>Other Appliances (clothes washer, refrigerator, etc.)</td>
<td>Best available technology</td>
<td>Best available technology</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Industry</th>
<th>Process Heat</th>
<th>Low Electrification</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Partial electrification</td>
<td>No change</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Transportation</th>
<th>Passenger Vehicles</th>
<th>Freight Trucks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>90% battery electric vehicle (BEV); 10% plug-in hybrid electric vehicle (PHEV)</td>
<td>50% electric 50% liquefied & compressed gas (LNG/CNG)</td>
</tr>
<tr>
<td></td>
<td>90% battery electric vehicle (BEV); 10% hydrogen fuel cell vehicle (HFCV)</td>
<td>50% hybrid diesel truck</td>
</tr>
<tr>
<td>Freight Trucks</td>
<td>50% electric 50% hybrid diesel truck</td>
<td>50% electric 50% liquefied & compressed gas (LNG/CNG)</td>
</tr>
</tbody>
</table>
Energy-related CO₂ Emissions

Million metric tons

REFERENCE
HIGH ELECTRIFICATION
LOW ELECTRIFICATION
HIGH DER

Includes emissions for the entire energy system and is not limited to power generation

Reference emissions decrease until 2035, but fall substantially short of 2050 carbon target

2050 GHG Target

All three pathways reduce emissions below 2050 CO₂ target
Final Energy Demand

Trillion Btu (TBtu)

Final energy: energy used in the delivery of services such as heating or transportation and excludes energy consumed in converting to other forms of energy

Overall energy demand decreases in all pathways (25 to 33% below Reference by 2050)

- Gasoline and diesel consumption heavily reduced across pathways
- LNG and CNG in freight trucks plays a key role
- Expanded role for electricity in all pathways

Note: “Other” includes final energy types such as jet fuel, liquefied petroleum gas (LPG), biomass, steam, etc.
Three Pillars of Deep Decarbonization

Energy Efficiency

Final Energy Consumption per Person (MMBtu per person)

<table>
<thead>
<tr>
<th>Year</th>
<th>2017</th>
<th>2050</th>
</tr>
</thead>
<tbody>
<tr>
<td>High Electrification</td>
<td>147</td>
<td>84</td>
</tr>
<tr>
<td>Low Electrification</td>
<td>147</td>
<td>93</td>
</tr>
<tr>
<td>High DER</td>
<td>147</td>
<td>84</td>
</tr>
</tbody>
</table>

Electricity Decarbonization

Carbon Intensity of Electricity Generation (tonnes CO₂ per MWh)

<table>
<thead>
<tr>
<th>Year</th>
<th>2017</th>
<th>2050</th>
</tr>
</thead>
<tbody>
<tr>
<td>High Electrification</td>
<td>0.34</td>
<td>0.02</td>
</tr>
<tr>
<td>Low Electrification</td>
<td>0.34</td>
<td>0.01</td>
</tr>
<tr>
<td>High DER</td>
<td>0.34</td>
<td>0.03</td>
</tr>
</tbody>
</table>

Electrification

Share of Electricity and Electric Fuels in Total Final Energy (%)

<table>
<thead>
<tr>
<th>Year</th>
<th>2017</th>
<th>2050</th>
</tr>
</thead>
<tbody>
<tr>
<td>High Electrification</td>
<td>25%</td>
<td>54%</td>
</tr>
<tr>
<td>Low Electrification</td>
<td>25%</td>
<td>44%</td>
</tr>
<tr>
<td>High DER</td>
<td>25%</td>
<td>54%</td>
</tr>
</tbody>
</table>

Note: Synthetic electric fuels are indicated by a separate color.
Three Pillars in Action: Passenger Transportation

High Electrification Pathway

Pillar: Electrification
Transition vehicles on the road from gasoline-powered internal combustion engine to battery electric and plug-in hybrid electric vehicles.

Pillar: Energy Efficiency
70 percent decrease in energy consumption since battery electric powertrains are more efficient than an internal combustion engine.

Pillar: Electricity Decarbonization
Charging electric vehicles on a low carbon electricity grid decreases overall passenger transportation emissions by 95 percent.

Vehicles on the Road

- **EV & PHEV**: 100% of total
- **REST**: 0%

Final Energy Demand

- **GASOLINE & DIESEL**: 80% in 2020, decreasing to 0% in 2050
- **ELECTRICITY**: 20% in 2020, increasing to 100% in 2050

Energy-related CO2 Emissions

- **GASOLINE & DIESEL**: 5 million metric tons in 2020, decreasing to 0% in 2050
- **ELECTRICITY**: 0% in 2020, increasing to 100% in 2050
Passenger Transportation Electrification

High Electrification Pathway

• Our pathways assume 100 percent of vehicle sales are zero emissions vehicles (ZEV) by 2035
 • 90 percent battery electric vehicle (BEV) in all pathways
 • Remaining 10 percent is plug-in hybrid electric vehicle (PHEV) or hydrogen fuel cell vehicle (HFCV)
• Vehicle fleet turnover lags sales
 • Share of vehicles on the road is not 100 percent until 2050
Impact of Delayed Adoption

High Electrification Pathway Sensitivity

• We assessed the impact of delaying the assumed year of 100 percent ZEV adoption from 2035 to 2050
• Pathway no longer complies with the study’s GHG targets
 • More than 10 percent of cars/trucks on the road in 2050 still consume petroleum
Structure of Household Energy Costs Changes

High Electrification Pathway, 2016$ per household per month

- Estimate of the change in average household costs per month
 - Includes appliances, light-duty vehicles, and home energy costs
 - Excludes economic benefits from avoiding climate change and air pollution
- Change in spending reflects energy system transformation: more on technology, less on fossil fuels
- Error bars reflect range in net cost from fossil fuel price uncertainty

Household Cost Impact
(Relative to Reference Case)
Results

Electricity System
Evolution of Retail Electricity Sales from Today to 2050

Average Megawatts (MWa)

- Retail sales increase by **60-75%** relative to today
- Transportation electrification is responsible for **50-60%** of the net increase

High Electrification

Base growth 2017-2050

- Electrification: Transportation
- Res/Com/Ind
- Incremental
- Rooftop
- PV

Low Electrification

- EE
- Res/Com/Ind
- Incremental
- Rooftop
- PV

High DER

- EE
- Res/Com/Ind
- Incremental
- Rooftop
- PV
Emissions Intensity of Electricity Generation

Tonnes CO₂ per MWh of generation

- **PGE Portfolio Emissions Intensity Range (2016 IRP)**
- **Deep Decarbonization Pathways**
- **New Gas CC (Illustrative)**
Installed Generation Capacity

MW

Capacity of renewables is 1.5x Reference Case levels by 2035 and more than 2.0x by 2050

Note: balancing resources (energy storage, flexible load, H2/P2G, etc. are excluded from figure)
Average renewable capacity additions are approximately **600 MW per year** between 2030 and 2050.

Starting in 2030, the quantity of new onshore wind is equivalent to **one to two Tucannon River (267 MW)** wind power plants installed *each year*.
Electricity Generation

MWa

Generation requirements double relative to today
Two-thirds carbon-free by 2035 and 90%+ by 2050

Highest generation requirements due to synthetic electric fuel production loads
Energy Balance in 2050: Where Electricity Generation is Consumed

Average Megawatts (MWa)

- Low Electrification pathway
 - Lowest retail energy deliveries
 - Highest electricity generation requirements to supply transmission-connected electrolysis and P2G facilities
- For illustration, the portion of generation that is curtailed is accounted for as a “load” to balance supply and demand
Distribution of Hourly Load and Net Load in 2050

REFERENCE

- **Load**
 - Minimum: -2,220 MW
 - Maximum: 5,280 MW

- **Net Load**
 - Minimum: -8,000 MW
 - Maximum: 5,535 MW

HIGH ELECTRIFICATION

- **Load**
 - Higher load

- **Net Load**
 - Negative net load experienced in 46% of hours
 - Minimum: -2,220 MW
 - Maximum: 5,535 MW

Negative net load experienced in 3% of hours.
Balancing Electricity Supply and Demand

High Electrification Pathway, Average Day in September 2050

Load and Renewable Generation

Net Load

Flexible Resource Dispatch

Load and Renewable Generation:
- System Load
- Utility-scale Solar PV
- Onshore Wind (PNW)
- Onshore Wind (MT)
- ROR Hydro
- Geothermal

Net Load:
- Energy Storage
- Flexible Load
- Hydro
- Thermal
- Curtailment

Note: H2 and P2G loads are key flexible resources in alternative pathways
Balancing Resources and Generation Curtailment

Diverse mix of balancing resources to integrate renewables and avoid curtailment & emissions

After accounting for these resources, 7 to 12 percent of available RE generation is curtailed

Balancing Resources Fleet (2050)

- Flexible End-Use Load
- Power-to-Gas
- Hydrogen Electrolysis
- Energy Storage
- Hydro
- Gas

Curtailment (2050)

- High Elec: 10% of available renewable energy
- Low Elec: 7% of available renewable energy
- High DER: 12% of available renewable energy

Note: flexible end-use load capability estimated as maximum hourly load shift.
Value of Flexible End-Use Load

High Electrification Pathway Sensitivity

- **Sensitivity**: no flexible end-use load
 - Curtailment experienced sooner and increases by 166 MWa by 2050
 - Emissions increase and pathway is no longer compliant with 2050 target
- Economic benefit to incentivize and enable flexible load
 - All pathways are electricity growth scenarios and flexible load provides an opportunity to moderate peaks
 - Analysis finds that flexible end-use loads included in base case reduce electricity-related costs by ~10% by 2050 relative to no flexible load sensitivity
Study Findings

- Deep decarbonization of the PGE service territory’s energy economy is possible and can be achieved using a variety of technologies and strategies
- Depends on a set of three pillars that are consistent with many studies examining decarbonization in the U.S. and abroad
 1. Energy efficiency;
 2. Decarbonization of electricity generation; and
 3. Increasing share of electricity and electric fuels
- Change evaluated in this study is transformational instead of incremental, and requires:
 - Both consumer and producer participation
 - New energy infrastructure
 - Timely planning to account for investment opportunities between now and 2050
- Transitioning to a low-carbon economy will change the composition of our energy bill, with more money spent on technology and less on fossil fuels
Insights on Deep Decarbonization and the Electricity Sector

• Economy-wide decarbonization will profoundly change the way electricity systems are operated and ideally planned for

• Power System Operations
 • In many hours of the year, renewable generation exceeds load
 • New sources of flexibility (energy storage, end-use load, H2/P2G) can complement traditional sources of flexibility (hydro and thermal) to ensure renewables are successfully integrated

• Integrated Resource Planning
 • Overall load requirements, shape of electric load and a highly renewable resource mix all affect resource adequacy
 • Scale of renewable capacity additions and demand-side participation exceeds historical levels
 • Proactive planning can facilitate a smooth transition

• Customer Participation
 • PGE’s customers play a key and active role to achieve a low-carbon economy
 • Smart charging of EVs and water heaters (among others) is highly valuable
Thank You

Contact:
Gabe Kwok
E: gabe.kwok@evolved.energy
P: 844-566-1366 ext. 3

www.evolved.energy
About Evolved Energy Research

- Energy consulting firm focused on addressing key energy sector challenges posed by climate change
- Lead developers of EnergyPATHWAYS, a bottom-up energy system model used to explore the near-term implications of long-term deep decarbonization
- We advise clients on issues of policy implementation and target-setting, R&D strategy, technology competitiveness and impact investing
Electrification of Space Heating
Overview

- **Problem Statement**
 - Space heating, a significant source of energy use and emissions, will need to be decarbonized in order to meet economy-wide GHG goals
 - Electrification of heat in buildings using air source heat pumps (ASHP) has been identified as a promising decarbonization strategy in numerous studies
 - ASHP efficiency is 2-4 times greater than electric resistance heaters, and also provides cooling
 - However, concerns have been raised about the efficiency of ASHPs when outdoor temperatures decrease, and backup (auxiliary) electric resistance systems are used
 - Concerns include whether distribution and system peak demands will sharply increase, requiring new electric generation, transmission and distribution infrastructure
 - We address these concerns in the context of ASHP technology in general and the characteristics of PGE’s service territory
ASHP Technology

• The issue of ASHP performance during very cold weather and reliance on (inefficient) backup electric resistance systems was identified many years ago, and has attracted considerable investment in research, development and deployment by both public and private institutions
 • For example, the U.S. Department of Energy’s High Efficiency Cold Climate Heat Pump program started in 2010
• ASHP technology has advanced and new models perform at high levels of efficiency even at very cold temperatures
• Northeast Energy Efficiency Partnerships (NEEP) lists currently available cold climate ASHP systems with a coefficient of performance (COP) at 5°F of 2-3
 • 2-3 times more efficient on a site-energy basis than the best available electric heater or gas furnace
Climate

- Very cold weather conditions are experienced less frequently in PGE’s service territory relative to other parts of Oregon.
- Comparison of daily minimum temperature in Portland against Bend, Oregon (outside PGE’s service territory) across the past 30 years shows less extreme cold weather.
- Minimum temperature in Portland was never below 5°F, the benchmark for cold climate ASHPs in New England.

Note: daily temperature data from NOAA
Nature of Electricity Demand

- Winter electricity demand is not the only concern, since PGE’s system peaks in both the winter and summer.
- Since ASHPs provide both heating and cooling, technology adoption also facilitates more efficient space cooling relative to air conditioners.

Note: hourly load data from FERC.
Additional Considerations

- Potential electric peak demand (local and system) increases from electrifying heat can be mitigated by:
 - Insulating homes
 - Pre-heating homes
 - Deploying distributed energy storage (i.e., discharge during peak heating load)
 - Adopting other energy efficient electric equipment
- In a carbon constrained environment, the tradeoff of not electrifying heat is to decarbonize pipeline gas, which also requires substantial new infrastructure
 - New central-station electrolysis and power-to-gas facilities
 - Significant efficiency losses from conversion to useful energy
 - Renewable resources (e.g., wind and solar PV power plants)
 - Transmission network upgrades for the renewable resources
Electricity Dispatch: Overview

• Organizational structure of the electricity system in EnergyPATHWAYS

- Residential Feeder
- Commercial Feeder
- Productive Feeder
- Bulk Transmission System

- Distribution and sub-transmission load
- Flexible load (smart water heaters, EV charging, etc.)
- Distributed generation (rooftop solar PV, combined heat and power)
- Distributed storage

- Transmission-level load
- Bulk storage (batteries, pumped hydro storage)
- Non-dispatchable generation (wind, solar, etc.)
- Dispatchable non-thermal generation and load (hydro, H2 electrolysis and power-to-gas)
- Thermal resources

Electricity dispatch process is illustrated in the following slides for a three-day period (February 6-8, 2050)
Electricity Dispatch: Distribution System Net Load

Illustrative - not a study result
Electricity Dispatch: Transmission System Net Load

Illustrative - not a study result
Flexible resources reduce net load peaks and valleys

Thermal generators dispatched in order of short-run marginal cost to meet remaining positive net load

Remaining negative net load is curtailed to bring supply and demand in balance
Month-Hour Electricity Dispatch in 2050
High Electrification Pathway: 2050

MWa

Month-Hour Dispatch: Load (Top) and Generation (Bottom)
Low Electrification Pathway: 2050

MWa

Month-Hour Dispatch: Load (Top) and Generation (Bottom)
High Distributed Energy Resources Pathway: 2050

MWa

Month-Hour Dispatch: Load (Top) and Generation (Bottom)
Overview

- The LC 66 Order requires PGE to perform an Enabling Study that examines the treatment of market capacity ("Market Study").
- The Market Study will be utilized to inform the 2019 IRP.
- As the Pacific NW is expected to move from a capacity surplus to a deficit, PGE wants to examine its reliance on market capacity.
- The Market Study will focus on how PGE’s access to regional resources is expected to change across various time frames.
The Market Study will provide a broad look at the wholesale power market in the PNW and inform PGE’s 2019 IRP.

Proposed Scope

- PGE plans to engage a third party consultant to perform a literature review and analysis of the NWPCC, PNUCC, and BPA regional market studies.

- Focal points of the Study include:
 - How much capacity is available now and how will that trend over time?
 - How much is PGE’s “share” of capacity?
 - The analysis will be performed over several different time frames.

- The Market Study will not provide insight into the economics of resources -- it will simply estimate whether the resources are expected to be available.

- PGE will then examine the seasonal quantities from the study in RECAP to help inform the 2019 IRP.
Customer Insights

Ron Newheiser
Market Strategies International
Portland General Electric
2017 Integrated Resource Plan Survey

Survey conducted: August-October 2017
Contents

- Research Objectives, Background, Methodology 3

Detailed Findings

- Initial Electricity Resource Preferences 7
- Informed Electricity Resource Preferences 12
- Renewable Resources / Environmental Issues 15
- Resource Allocation Exercises for Long-Term Energy Plan 21
- Key Takeaways 28

Appendices

- Appendix A: Detailed Methodology, Resource Definitions, Allocation Exercise Design 30
- Appendix B: Knowledge of Current Resources Used for PGE’s Power Supply 36
- Appendix C: Additional Resource Allocation Exercise Results 42
- Appendix D: Respondent Profiles 45
- Market Strategies Contact Information 48
PGE 2017 Integrated Resource Plan (IRP) Survey Objectives

PGE has commissioned an updated IRP Survey in 2017 to assess customers’ resource preferences and cost expectations in order to inform PGE’s long-term resource planning and the development of customer service plans and rates, with the following specific objectives:

• Provide information on customer preferences to support the public process of Integrated Resource Planning.

• Understand customer concerns and preferences as they relate to Integrated Resource Planning.

• Quantify customers’ (residential, general business, and key business customers) perceptions and receptivity to a variety of energy resource options, allowing PGE to assess individual resource options and resource mix options on a ratio scale of customer support.

• Determine which resource options customers would be most likely to support, and also the degree to which certain options would be supported over others, given differences in price and resource mix.
Market Changes Since the Most Recent 2012 PGE IRP Survey

Since conducting the most recent PGE Integrated Resource Plan (IRP) Survey in 2012:

- The state of Oregon has made an historic decision to move away from coal and implement higher Renewable Portfolio Standards

- The use of renewable energy and demand side resources have increased considerably, including:
 - Energy efficiency
 - Distributed generation (solar)
 - Energy storage
 - Electric vehicles
 - Smart thermostats
 - Energy management systems
Methodology

• Random samples of PGE Residential and General Business customers were screened and recruited to complete a web survey about PGE’s future power supply.

• PGE’s 2017 Integrated Resource Planning Survey was completed by:
 – n=502 PGE Residential customers, screened as their household’s any decision-maker.
 – n=186 General Business customers, screened as a person responsible for making energy-related policy decisions for their company.

• After completing the screener, the main Integrated Resource Planning Survey took approximately 40 minutes to complete on average, via a self-administered web survey.
Detailed Findings

Portland General Electric
2017 Integrated Resource Plan Survey
Initial Electricity Resource Preferences

Before being provided with detailed information about each resource
> In the “Screening” section preceding the main IRP survey, customers were asked to rank their three most preferred resources for meeting the demand for power in Oregon, with Renewable Power Plants dominant as the first choice among most customers, and Next Generation Nuclear Power Plants cited most frequently as the “least preferred” option.

Among Residential Customers

Relative Preference Index

<table>
<thead>
<tr>
<th>Resource</th>
<th>2012 Rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>Renewable Power Plants</td>
<td>2nd*</td>
</tr>
<tr>
<td>Energy Storage</td>
<td>NA</td>
</tr>
<tr>
<td>Energy Efficiency</td>
<td>1st*</td>
</tr>
<tr>
<td>Natural Gas Power Plants</td>
<td>3rd</td>
</tr>
<tr>
<td>Demand Response</td>
<td>NA</td>
</tr>
<tr>
<td>Next Generation Small-scale Nuclear Power Plants</td>
<td>4th</td>
</tr>
</tbody>
</table>

*Relative Preference determined through Bradley-Terry Analysis. See slide notes for details.
\(^Wording and metric changed from 2012; use caution when interpreting trends.

Among General Business Customers

Relative Preference Index

<table>
<thead>
<tr>
<th>Resource</th>
<th>2012 Rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>Renewable Power Plants</td>
<td>2nd*</td>
</tr>
<tr>
<td>Energy Storage</td>
<td>NA</td>
</tr>
<tr>
<td>Energy Efficiency</td>
<td>1st*</td>
</tr>
<tr>
<td>Natural Gas Power Plants</td>
<td>3rd</td>
</tr>
<tr>
<td>Demand Response</td>
<td>NA</td>
</tr>
<tr>
<td>Next Generation Small-scale Nuclear Power Plants</td>
<td>4th</td>
</tr>
</tbody>
</table>

*Relative Preference determined through Bradley-Terry Analysis. See slide notes for details.
\(^Wording and metric changed from 2012; use caution when interpreting trends.

*2012 Resource Descriptions:
- **Renewable Resources**: (Wind, Solar, Biomass, Geothermal, but not including Hydro-electric power plants)
- **Customer energy efficiency and energy conservation**: (i.e., CFL bulbs, more efficient appliances, lowering the thermostat)
Initial Electricity Resource Prioritization Comparison:

Customers Who Completed the IRP Survey *versus* Customers Who Completed Screening but Opted Not To Complete the Main Survey

<table>
<thead>
<tr>
<th>Among Residential Customers Who Completed the 2017 IRP Survey (n=502)</th>
<th>Among Residential Customers Who Completed the Screener, But Did Not Complete the 2017 IRP Survey (n=202)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Most Preferred</td>
<td>Least Preferred</td>
</tr>
<tr>
<td>Renewable Power Plants</td>
<td>60%</td>
</tr>
<tr>
<td>Energy Storage</td>
<td>12%</td>
</tr>
<tr>
<td>Energy Efficiency</td>
<td>10%</td>
</tr>
<tr>
<td>Natural Gas Power Plants</td>
<td>4%</td>
</tr>
<tr>
<td>Demand Response</td>
<td>2%</td>
</tr>
<tr>
<td>Next Generation Small-scale Nuclear Power Plants</td>
<td>8%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Among General Business Customers Who Completed the 2017 IRP Survey (n=186)</th>
<th>Among General Business Customers Who Completed the Screener, But Did Not Complete the 2017 IRP Survey (n=254)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Most Preferred</td>
<td>Least Preferred</td>
</tr>
<tr>
<td>Renewable Power Plants</td>
<td>47%</td>
</tr>
<tr>
<td>Energy Storage</td>
<td>7%</td>
</tr>
<tr>
<td>Energy Efficiency</td>
<td>17%</td>
</tr>
<tr>
<td>Natural Gas Power Plants</td>
<td>8%</td>
</tr>
<tr>
<td>Demand Response</td>
<td>2%</td>
</tr>
<tr>
<td>Next Generation Small-scale Nuclear Power Plants</td>
<td>16%</td>
</tr>
</tbody>
</table>

S6-S9. Now, please think about the resources PGE might use to meet the demand for power in Oregon. Which of the following would be your first/second/third/last choice for how PGE meets this demand for power?
Residential customers most prefer Energy Efficiency and Solar Power be included in future energy plans for Oregon with roughly nine in ten customers indicating these resources should be included (%6-10). More than eight in ten also prefer Wind Power, Smart Grid, and Energy Storage be included.

Least preferred resource options among Residential customers includes Next Generation Small-scale Nuclear Power (28%), Next Generation Coal (17%), and Conventional Coal (9%).
General Business customers most prefer Energy Efficiency be included in future energy plans for Oregon with roughly nine in ten customers indicating this resource be included (%6-10). Eight in ten also prefer Solar Power and Smart Grid be included.

Least preferred resource options among General Business customers are similar to Residential and include Next Generation Small-scale Nuclear Power (39%), Next Generation Coal (37%), and Conventional Coal (19%).
Informed Electricity Resource Preferences

After being provided with detailed information about each resource
Electricity Resource Preferences for PGE’s Long-Term Energy Plan

Residential (After Seeing Detailed Information About Each Resource)

n=502

> After seeing more detailed information about each resource, Residential customers indicate the most preference for energy efficiency (89% total prefer), renewable power plants (87%), and geothermal power plants (84%) to be included as part of PGE’s long-term energy plan.

|^ In 2006, Natural Gas was described as having “low” price stability, and “increasingly imported”.

Given these factors, please rate [RESOURCE] in terms of the extent to which you would prefer that this resource be part of PGE’s long-term energy supply plans.

RE_N_1, NG_1, NUC_1, EE_1, DR_1, ES_1, WIND_1, SOL_1, BIO_1, GEO_1, HYDRO_1.
Given these factors, please rate [RESOURCE] in terms of the extent to which you would prefer that this resource be part of PGE’s long-term energy supply plans.

RENG_1, NG_1, NUC_1, EE_1, DR_1, ES_1, WIND_1, SOL_1, BIO_1, GEO_1, HYDRO_1.
Renewable Resources, Environmental Issues

Customer support for increased renewable resources

Expected timeframe for PGE’s transition to 100% renewable power

Prioritization of environmental concerns
Support for Use of More Renewable Resources Even if All PGE Customers Would Need to Pay More for Electricity

> Nearly two-thirds (65%) of Residential customers and six in ten (59%) General Business customers think PGE should use more renewable resources even if customers would need to pay more for electricity.

Do you think that PGE should use more renewable resources even if this meant that all PGE customers would need to pay more for electricity?

- **Residential**
 - Yes: 65%
 - No: 19%
 - Not sure: 17%
 - n=502

- **General Business**
 - Yes: 59%
 - No: 28%
 - Not sure: 13%
 - n=186

What is the highest additional cost for renewable resources that you think PGE should ever consider paying?

- **Residential**
 - 3%: 22%
 - 5%: 23%
 - 10%: 28%
 - 15%: 10%
 - 20%: 8%
 - More than 20%: 8%
 - n=502
 - 54% say ten percent or more

- **General Business**
 - 3%: 36%
 - 5%: 30%
 - 10%: 24%
 - 20%: 5%
 - More than 20%: 4%
 - n=186
 - 34% say ten percent or more

REN_2. Do you think that PGE should use more renewable resources even if this meant that all PGE customers would need to pay more for electricity?

REN_3. What is the highest additional cost for renewable resources that you think PGE should ever consider paying -- recognizing that all customers would ultimately have to bear this cost?
Expected Timeframe for PGE to Provide 100% Renewable Power

> Residential customers anticipate a quicker transition to 100% renewable energy than their General Business counterparts, with 51% of Residential customers expecting this to be available for their home within five years, versus 27% of General Business customers expecting this. (A portion of this 0-5 year response may be among those familiar with PGE’s Green Source program.)

> Majorities of Residential (64%) and General Business (56%) customers feel that PGE should achieve 100% renewable energy across its entire service territory within 20 years.

Desired Number of Years for PGE to Provide Your Home or Business with 100% Clean and Renewable Energy like Wind, Solar, Geothermal, and Hydropower

<table>
<thead>
<tr>
<th></th>
<th>Residential</th>
<th>General Business</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n=502</td>
<td>n=186</td>
</tr>
<tr>
<td>0-5 years</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6-10 years</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11-20 years</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21-50 years</td>
<td></td>
<td></td>
</tr>
<tr>
<td>More than 50 years</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Not sure</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean number of years</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Expected Timeframe for PGE to Provide 100% Renewable Energy

- **Residential**: 79% within 20 years or less (9.5 years)
- **General Business**: 71% within 20 years or less (16.6 years)

Expected Number of Years for PGE to Achieve 100% Renewable Energy Supply for Its Entire Service Territory

- **Residential**: 64% within 20 years or less (17.3 years)
- **General Business**: 42% within 20 years or less (24.6 years)

Mean number of years

- Residential: 24.6 years
- General Business: 16.6 years

42% of Residential customers feel PGE should be required to provide 100% renewable, carbon-free energy to all customers in its entire service territory. 56% within 20 years or less

30% of General Business customers feel PGE should be required to provide 100% renewable, carbon-free energy to all customers in its entire service territory.

REN_100A. By what year do you want the energy that powers your home/business to be produced by 100% renewable, carbon-free generation resources like wind, solar, geothermal and hydropower? REN_100. Currently, customers can elect 100% renewable energy through purchase of certified Renewable Energy Certificates. Some cities and states are setting long-term goals to have 100% of their energy supplies produced from renewable, carbon-free sources [i.e. energy supply, not purchased RECs]. By what year do you expect PGE to achieve a 100% renewable, carbon-free energy supply for its entire service territory?
Concern Regarding Global / Societal Issues, Action Taken Among Residential Customers

Pollution of groundwater sources (18%), pollution of rivers and streams (16%) and global climate change / global warming (15%) are the most concerning environmental issue for Residential PGE customers.

<table>
<thead>
<tr>
<th>Global / Societal Issues</th>
<th>Relative Concern (derived importance*)</th>
<th>Rank^</th>
<th>2006</th>
<th>2012</th>
<th>2017</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pollution of groundwater sources</td>
<td></td>
<td></td>
<td>2nd</td>
<td>2nd</td>
<td>30%</td>
</tr>
<tr>
<td>Pollution of rivers and streams</td>
<td></td>
<td></td>
<td>1st</td>
<td>1st</td>
<td>31%</td>
</tr>
<tr>
<td>Global climate change / global warming</td>
<td></td>
<td></td>
<td>6th</td>
<td>7th</td>
<td>28%</td>
</tr>
<tr>
<td>Air pollution</td>
<td></td>
<td></td>
<td>7th</td>
<td>5th</td>
<td>27%</td>
</tr>
<tr>
<td>Preserving local fish and wildlife habitats</td>
<td></td>
<td></td>
<td>3rd</td>
<td>3rd</td>
<td>23%</td>
</tr>
<tr>
<td>Disaster preparedness for events like major earthquakes, wildfires, and tsunamis</td>
<td>10%</td>
<td>NA</td>
<td>NA</td>
<td>-</td>
<td>23%</td>
</tr>
<tr>
<td>Deforestation in Oregon</td>
<td></td>
<td></td>
<td>5th</td>
<td>6th</td>
<td>16%</td>
</tr>
<tr>
<td>Cyber threats to our energy distribution systems</td>
<td></td>
<td></td>
<td>NA</td>
<td>NA</td>
<td>15%</td>
</tr>
</tbody>
</table>

^ Items and metric changed from 2006 and 2012; use caution when interpreting ranking trend.

* Relative Concern” is based on “derived importance” modeled from paired-comparison results across these eight global / societal issues.

** Scale for changes made in response to issue: 0=Little or no change, 10=A great deal of change.
Concern Regarding Global / Societal Issues, Behavioral Changes Among General Business Customers

> General Business customers prioritize pollution of groundwater sources (18%) and pollution of rivers and streams (17%) as issues of most concern to them.

> Global climate change/global warming (8%) is a lesser concern among General Business customers compared with their Residential counterparts.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Pollution of groundwater sources</td>
<td>18%</td>
<td>2nd</td>
<td>2nd</td>
<td>20%</td>
<td>27%</td>
<td>11%</td>
</tr>
<tr>
<td>Pollution of rivers and streams</td>
<td>17%</td>
<td>1st</td>
<td>1st</td>
<td>17%</td>
<td>28%</td>
<td>20%</td>
</tr>
<tr>
<td>Preserving local fish and wildlife habitats</td>
<td>13%</td>
<td>4th</td>
<td>4th</td>
<td>9%</td>
<td>16%</td>
<td>16%</td>
</tr>
<tr>
<td>Disaster preparedness for events like major earthquakes, wildfires, and tsunamis</td>
<td>13%</td>
<td>NA</td>
<td>NA</td>
<td>-</td>
<td>-</td>
<td>8%</td>
</tr>
<tr>
<td>Air pollution</td>
<td>12%</td>
<td>3rd</td>
<td>3rd</td>
<td>10%</td>
<td>20%</td>
<td>14%</td>
</tr>
<tr>
<td>Cyber threats to our energy distribution systems</td>
<td>12%</td>
<td>NA</td>
<td>NA</td>
<td>-</td>
<td>-</td>
<td>9%</td>
</tr>
<tr>
<td>Global climate change / global warming</td>
<td>8%</td>
<td>6th</td>
<td>7th</td>
<td>6%</td>
<td>12%</td>
<td>15%</td>
</tr>
<tr>
<td>Deforestation in Oregon</td>
<td>7%</td>
<td>7th</td>
<td>6th</td>
<td>9%</td>
<td>11%</td>
<td>19%</td>
</tr>
</tbody>
</table>

PC. Which of these global / societal issues is of most concern to you as a resident of Oregon? ENVCONC1-ENVCONC8. To what degree has your facility made changes in terms of how you behave/it operates in response to each of these global / societal issues?

* Relative Concern” is based on “derived importance” modeled from paired-comparison results across these eight global / societal issues.

** Scale for changes made in response to issue: 0=Little or no change, 10=A great deal of change
PGE Investment in New Technology to Promote Energy Efficiency, Facilitate the Integration of Renewable Resources, and Make Operations More Efficient

> Approximately three-quarters of Residential (75%) and General Business (72%) customers feel that PGE should invest in new technologies (75% Residential, 72% General Business).

Support for PGE Investment in New Technology

- **Residential**
 - %Total Should Invest (%6-10): 75%
 - Definitely Should Invest (%8-10): 35%
 - Should Invest (%6-7): 40%
 - Neutral (%5): 40%
 - Should not Invest (%0-4): 40%
 - Total: 502 customers

- **General Business**
 - %Total Should Invest (%6-10): 72%
 - Definitely Should Invest (%8-10): 33%
 - Should Invest (%6-7): 40%
 - Neutral (%5): 40%
 - Should not Invest (%0-4): 40%
 - Total: 186 customers

NEWTECH. Some electric utilities invest ratepayer money in research and development of new technologies that might promote energy efficiency, facilitate integration of renewable resources, or otherwise make their operations more efficient. Other utilities do not try to develop new technologies, but simply try to find and implement the best technologies that have already been developed. To what extent do you think that PGE should be investing in developing new technologies?
Resource Allocation Exercises

Customer-developed long-term energy resource plans
Relative Importance of Key Factors in Resource Evaluation

For both Residential and General Business customers, environmental impacts and reliability of the resource are most important when evaluating resources. However, price stability and resource cost follow closely among both customer types.

Average Allocation of 100 Points Across Four Key Factors Used for Evaluating Each Energy Resource

Resource Cost
The cost both to build and to operate the resource, not including fuel costs.

Price Stability
The long term stability and predictability of the price of the fuel used to operate the plant, which impacts the overall cost of the electricity that will be produced.

Reliability of the Resource
Will the resource be able to produce electricity when it is needed?

Environmental Impact
The impact that using the resource has on the environment.

Residential
n=502
19% 22% 28% 30%

General Business
n=186
19% 24% 29% 26%

Note: “Factor Importance” percentages are means calculated for each factor from a 100-point allocation exercise.

FACTOR_1. Resource Cost – The cost both to build and to operate the resource, not including fuel costs.
FACTOR_2. Price Stability -- The long term stability and predictability of the price of the fuel used to operate the plant, which impacts the overall cost of the electricity that will be produced.
FACTOR_3. Environmental Impacts – The impact that using the resource has on the environment.
FACTOR_4. Reliability of the Resource -- Will the resource be able to produce electricity when it is needed?
Three quarters (75%) of Residential customers and seven in ten (71%) General Business customers want renewable power plants included in the future electricity supply, with only 3% and 4% indicating that they do not want renewable power included.

Next generation nuclear is the least desired resource for future energy supply with approximately one-half (49%) of both customer segments indicating they do not want it included.

<table>
<thead>
<tr>
<th>Resource Type</th>
<th>Residential</th>
<th>General Business</th>
<th>Key Accounts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Renewable Power Plants [wind, solar, biomass, geothermal, hydro-electric]</td>
<td>3% 75%</td>
<td>4% 71%</td>
<td></td>
</tr>
<tr>
<td>Energy Efficiency</td>
<td>2% 50%</td>
<td>1% 52%</td>
<td></td>
</tr>
<tr>
<td>Energy Storage</td>
<td>5% 39%</td>
<td>7% 29%</td>
<td></td>
</tr>
<tr>
<td>Natural Gas-Fired Power Plants</td>
<td>14% 27%</td>
<td>9% 37%</td>
<td></td>
</tr>
<tr>
<td>Demand Response</td>
<td>14% 27%</td>
<td>14% 28%</td>
<td></td>
</tr>
<tr>
<td>Next Generation Small-scale Nuclear Power Plants using Advanced Safety Technology</td>
<td>49% 17%</td>
<td>49% 22%</td>
<td></td>
</tr>
</tbody>
</table>
When several specific types of renewable power plants are presented alongside the other options, Residential and General Business prioritization of resources to be developed over the next 10 years are similar, with four out of five specific renewable power plant types (all except Biomass) preferred over the other options.
Customers’ Long-Term Energy Resource Plans: Electricity Resource Allocation Block 1 – *All Resource Options*

- In the initial “baseline” Resource Allocation Exercise, customers were asked to allocate resource “units” across six different electricity resource options to create their long-term energy plan.
- Among both the Residential and General Business segments, Renewable Power Plants receive the highest percent allocation in Block 1, even when they are priced at a higher cost than other options.
- On average, Residential customers allocate slightly more to *Renewable Power Plants* compared with their General Business counterparts, while General Business customers allocate slightly more to *Natural Gas* and *Next Generation Small-Scale Nuclear power plants*.

Residential
- **Renewable Power Plants**
 - **40%**
- **Natural Gas-Fired Power Plants**
 - **15%**
- **Next Generation Small-Scale Nuclear Power Plants**
 - **8%**
- **Energy Efficiency**
 - **17%**
- **Demand Response**
 - **7%**
- **Energy Storage**
 - **14%**

General Business
- **Renewable Power Plants**
 - **36%**
- **Natural Gas-Fired Power Plants**
 - **19%**
- **Next Generation Small-Scale Nuclear Power Plants**
 - **11%**
- **Energy Efficiency**
 - **18%**
- **Demand Response**
 - **7%**
- **Energy Storage**
 - **10%**

SCEN1_A
Customers’ Long-Term Energy Resource Plans:
Electricity Resource Allocation Block 1 – All Resource Options
With Renewable Power Plants at Their LOWEST Cost / All Other Resources at Their HIGHEST Cost

Cost Points for Each Unit:

<table>
<thead>
<tr>
<th>Cost Points</th>
<th>Residential n=502</th>
<th>General Business n=186</th>
</tr>
</thead>
<tbody>
<tr>
<td>75</td>
<td>47%</td>
<td>48%</td>
</tr>
<tr>
<td>125</td>
<td></td>
<td></td>
</tr>
<tr>
<td>150</td>
<td>13%</td>
<td>18%</td>
</tr>
<tr>
<td>100 / 150*</td>
<td>6%</td>
<td>6%</td>
</tr>
<tr>
<td>100 / 150*</td>
<td>16%</td>
<td>15%</td>
</tr>
<tr>
<td>150</td>
<td>7%</td>
<td>5%</td>
</tr>
</tbody>
</table>

* For Energy Efficiency and Demand Response, maximum cost points were 100 for 0-5 units, and 150 for 6-10 units allocated.
With Natural Gas-Fired Power Plants at Their LOWEST Cost / All Other Resources at Their HIGHEST Cost

Customers’ Long-Term Energy Resource Plans: Electricity Resource Allocation Block 1 – All Resource Options

Cost Points for Each Unit: 150 75 150 100 / 150* 100 / 150* 150

<table>
<thead>
<tr>
<th></th>
<th>Residential n=502</th>
<th>General Business n=186</th>
</tr>
</thead>
<tbody>
<tr>
<td>Renewable Power Plants</td>
<td>40%</td>
<td>36%</td>
</tr>
<tr>
<td>Natural Gas-Fired Power Plants</td>
<td>16%</td>
<td>26%</td>
</tr>
<tr>
<td>Next Generation Small-Scale Nuclear Power Plants (using advanced safety technology)</td>
<td>6%</td>
<td>7%</td>
</tr>
<tr>
<td>Energy Efficiency</td>
<td>18%</td>
<td>17%</td>
</tr>
<tr>
<td>Demand Response</td>
<td>7%</td>
<td>5%</td>
</tr>
<tr>
<td>Energy Storage (batteries; water heaters, etc.)</td>
<td>13%</td>
<td>9%</td>
</tr>
</tbody>
</table>

* For Energy Efficiency and Demand Response, maximum cost points were 100 for 0-5 units, and 150 for 6-10 units allocated.
Key Takeaways

- Respondents indicated a desire to see more renewable energy sources in the PGE energy mix
 - Both residential and business customers expressed this desire and were consistently aligned with each other
- Customers support the effort to add renewables even if it costs them more
- Customers expect PGE to move to renewable energy sources quickly
- Customers are not exclusively concerned about cost factors when considering energy resources.
 - Environmental concerns actually score higher than cost concerns when customers are asked to allocate importance.
- Environmental concerns are important to customers
 - Climate change is an increasing concern among residential customers
- Low preference for Demand Response, relative to other energy sources, may be due to incomplete customer knowledge about the programs.
 - Increased communication about programs is important to improve public knowledge about them
Wrap up

Franco
Appendices

Appendix A: Detailed Methodology, Resource Definitions, Allocation Exercise Design
Appendix B: Knowledge of Current Resources Used for PGE’s Power Supply
Appendix C: Additional Resource Allocation Exercise Results
Appendix D: Respondent Profiles
Appendix A: Detailed Methodology, Resource Definitions, Allocation Exercise Design

Data collection methodology

Energy resource definitions

Resource allocation exercise design
2017 IRP Survey Data Collection Methodology Overview

<table>
<thead>
<tr>
<th></th>
<th>Residential</th>
<th>General Business</th>
<th>Key Accounts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall Quotas</td>
<td>502 completed surveys</td>
<td>186 completed surveys</td>
<td>16 completed surveys</td>
</tr>
<tr>
<td>Additional Quotas and Weighting</td>
<td>Data weighted by gender, age, county, and PGE Residential Segments.</td>
<td>Medium ($6K - $24.9K annual PGE revenue): 135 Large ($25K+ annual PGE revenue): 51 Data weighted by revenue segment.</td>
<td>No additional quotas or weights applied.</td>
</tr>
<tr>
<td>Qualified Respondent</td>
<td>Adult, energy decision-maker for HH, industry screen</td>
<td>Responsible for making energy-related decisions for their company</td>
<td>Main contact identified in PGE’s Key Business Customer database</td>
</tr>
<tr>
<td>Screening and Recruiting</td>
<td>Web-based screening and recruitment</td>
<td>Web-based screening and recruitment, supplemented with phone screening and recruitment</td>
<td>Web-based screening and recruitment</td>
</tr>
<tr>
<td>Screener Incentives</td>
<td>A drawing incentive for participating in the web Screener survey (chance to win one $500 grand prize, or one of five $100 cash prizes)</td>
<td>No Screener incentive; Pre-survey email from PGE encouraging participation</td>
<td></td>
</tr>
<tr>
<td>Main IRP Survey</td>
<td>Web survey (restricted to PCs, Macs, and large tablets due to survey layout – no mobile phones)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Main IRP Survey Incentives</td>
<td>$25 check</td>
<td>$40 check</td>
<td>$100 check</td>
</tr>
<tr>
<td>Survey Length</td>
<td>Screener: 5 – 7 minutes / Main IRP Survey: 35+ minutes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Survey Sample</td>
<td>Randomly selected customer records from PGE’s customer database</td>
<td></td>
<td>All available Key Business Customer records (<100 provided)</td>
</tr>
</tbody>
</table>
Survey Screening: Initial Electricity Resource Prioritization

Now, please think about the resources PGE might use to meet the demand for power in Oregon. Which of the following would be your [first / second / third / least preferred] choice for how PGE meets this demand for power?

Renewable Power Plants (including Wind, Solar, Biomass, Geothermal, and Hydro-electric power plants)

Natural Gas Power Plants

Next Generation Small-scale Nuclear Power Plants using Advanced Safety Technology

Energy Efficiency (installation of energy efficient appliances, lighting, and weatherization)

Demand Response (asking customers to shift time of electricity use or reduce use via behaviors such as turning off lights and appliances)

Energy Storage (battery systems that store excess electricity generation, such as power produced by solar arrays during daytime hours, for use when needed)
Descriptions of Energy Resource Options for Initial Survey Questions

More detailed descriptions of selected electricity resource options were provided later in the survey, preceding the resource allocation exercises.

Natural Gas-Fired Power Plants

Conventional Coal Power Plants

Next Generation Coal Power Plants with Reduced Emissions

Next Generation Small-scale Nuclear Power Plants using Advanced Safety Technology

Wind Power Plants

Solar Power Plants

Biomass Power Plants (using plant-derived material)

Geothermal Power Plants (using naturally occurring heat in the earth to generate energy)

Hydro-electric Power Plants

Energy Efficiency (installation of energy efficient appliances, lighting, and weatherization)

Demand Response (asking customers to shift time of electricity use or reduce use via behaviors such as turning off lights and appliances)

Distributed Generation (small-scale generation located at point of consumption. e.g. solar, microhydro, fuel cells, small wind)

Energy Storage (battery systems that store excess electricity generation, such as power produced by solar arrays during daytime hours, for use when needed)

Smart Grid (investments in new technologies and infrastructure to support more efficient management of electricity supplies)
Electricity Resource Allocation Exercises

After being presented detailed information about each electricity resource, respondents were asked to complete several “resource allocation exercises” in which they allocated points across several potential resources to create their own long-term energy supply plans.

- First, they completed an initial “baseline” resource allocation with no cost factors introduced.
- Then, they completed several additional resource allocation exercises with three different sets of resource options, and price factors for each resource which varied across the exercises.

An example of one of the resource allocation exercises respondents completed is shown below.

The table below provides several electricity resource options that are available to you to build an energy plan. It also tells you the cost “points” associated with each unit of electricity resource you select.

To complete this exercise you must:
- Select 10 units of electricity resource in total
- Select only one type of resource or a mix of resources
- Include only the resources you want in your plan

Please note: The cost points associated with each type of resource may or may not reflect the actual costs that would be associated with acquiring each resource in the marketplace. For the purposes of this exercise, however, please make your energy planning decisions assuming the relative costs reflected in the resource cost points indicated.

Creating a plan that totals 1000 costs points will result in no increase in PGE customers’ bills. However, you DO NOT have to spend exactly 1000 cost points:
- For every 250 points your plan EXCEEDS 1000 cost points, the bills for ALL PGE customers will go up by 5%
- For every 250 points your plan costs LESS than 1000 cost points, the bills for ALL PGE customers will go down by 5%
- Please enter the number of units of each resource to be included in your plan in the table below. When you have selected the 10 units of electricity resource you want – recognizing the total cost impact of those resource selections – you are done.

<table>
<thead>
<tr>
<th>Resource</th>
<th>Maximum Units of Each Resource Available</th>
<th>Cost Points for Each Unit (including cost to build, operate & cost of fuel)</th>
<th>Enter Number of Units of Each Resource Included in Your Resource Plan</th>
<th>Cost for Units of Electricity Selected for Each Resource</th>
</tr>
</thead>
<tbody>
<tr>
<td>Renewable Power Plants (wind, solar, biomass, geothermal, hydro-electric)</td>
<td>10</td>
<td>(75-150)</td>
<td>[RECORD UNITS 0-10]</td>
<td>[DISPLAY TOTAL FOR RENEWABLES]</td>
</tr>
<tr>
<td>Natural Gas Power Plants</td>
<td>10</td>
<td>(75-125)</td>
<td>[RECORD UNITS 0-10]</td>
<td>[DISPLAY TOTAL FOR NATURAL GAS]</td>
</tr>
<tr>
<td>Next Generation Small-scale Nuclear Power Plants using Advanced Safety Technology</td>
<td>10</td>
<td>(125-150)</td>
<td>[RECORD UNITS 0-10]</td>
<td>[DISPLAY TOTAL FOR NUCLEAR]</td>
</tr>
<tr>
<td>Energy Efficiency</td>
<td>10</td>
<td>(75-100 for 0-5 units; 125-150 for 6-10 units)</td>
<td>[RECORD UNITS 0-10]</td>
<td>[DISPLAY TOTAL FOR EE]</td>
</tr>
<tr>
<td>Demand Response</td>
<td>10</td>
<td>(75-100 for 0-5 units; 125-150 for 6-10 units)</td>
<td>[RECORD UNITS 0-10]</td>
<td>[DISPLAY TOTAL FOR DEMAND RESPONSE]</td>
</tr>
<tr>
<td>Energy Storage (batteries, water heaters, etc.)</td>
<td>10</td>
<td>[100-150]</td>
<td>[RECORD UNITS 0-10]</td>
<td>[DISPLAY TOTAL FOR ENERGY STORAGE]</td>
</tr>
</tbody>
</table>

Total Number of Units of Electricity Selected Must Equal 10

Click Here for Total [DISPLAY TOTAL NUMBER OF UNITS SELECTED]

Click Here for Total Cost of Energy Plan [DISPLAY TOTAL COST]
Summary of Resource Option Cost Scenarios

<table>
<thead>
<tr>
<th>Resource Option</th>
<th>Energy Efficiency</th>
<th>Demand Response</th>
<th>Energy Storage</th>
<th>Natural Gas</th>
<th>Next Gen Nuclear</th>
<th>Renewables</th>
<th>Wind</th>
<th>Solar</th>
<th>Biomass</th>
<th>Geothermal</th>
<th>Hydro</th>
</tr>
</thead>
<tbody>
<tr>
<td>COST POINTS RANGE</td>
<td>75-150</td>
<td>75-150</td>
<td>100-150</td>
<td>75-125</td>
<td>125-150</td>
<td>75-150</td>
<td>75-125</td>
<td>75-150</td>
<td>100-150</td>
<td>100-150</td>
<td>100-150</td>
</tr>
<tr>
<td>BASELINE SCENARIO (no cost factors)</td>
<td></td>
</tr>
<tr>
<td>Scenario 1 (Baseline)</td>
<td></td>
</tr>
<tr>
<td>SCENARIOS FOR BLOCK 1</td>
<td></td>
</tr>
<tr>
<td>Scenario 2</td>
<td></td>
</tr>
<tr>
<td>Scenario 3</td>
<td></td>
</tr>
<tr>
<td>Scenario 4</td>
<td></td>
</tr>
<tr>
<td>Scenario 5</td>
<td></td>
</tr>
<tr>
<td>Scenario 6</td>
<td></td>
</tr>
<tr>
<td>SCENARIOS FOR BLOCK 2</td>
<td></td>
</tr>
<tr>
<td>Scenario 7</td>
<td></td>
</tr>
<tr>
<td>Scenario 8</td>
<td></td>
</tr>
<tr>
<td>Scenario 9</td>
<td></td>
</tr>
<tr>
<td>Scenario 10</td>
<td></td>
</tr>
<tr>
<td>Scenario 11</td>
<td></td>
</tr>
<tr>
<td>SCENARIOS FOR BLOCK 3</td>
<td></td>
</tr>
<tr>
<td>Scenario 12</td>
<td></td>
</tr>
<tr>
<td>Scenario 13</td>
<td></td>
</tr>
<tr>
<td>Scenario 14</td>
<td></td>
</tr>
<tr>
<td>Scenario 15</td>
<td></td>
</tr>
</tbody>
</table>
Appendix B: Knowledge of Current Resources Used for PGE’s Power Supply

Familiarity with electricity resource options

Knowledge of resources used for PGE’s power supply

Awareness that electricity received from PGE is generated from renewable resources
Familiarity with Electric Resource Options – Residential
n=502

> Residential customers report being most familiar with Energy Efficiency, with more than eight in ten (86%) saying they are familiar with this energy resource option. Roughly two in three customers say they are familiar with Demand Response, Wind Power, Hydro-Electric, and Solar Power (64-68%).

> Familiarity is lowest with Biomass Power, Next Generation Coal, and Next Generation Small-scale Nuclear with approximately one in four customers reporting they are familiar with these options.

Q1A-Q1N. How familiar are you with each of the following electricity resource options?

Energy Efficiency/Demand Response
Renewable Power Generation
Conventional Power Generation
Other

*Wording changed from 2012; use caution when interpreting trends.
Familiarity with Electric Resource Options – *General Business*
n=186

> Similar to Residential customers, General Business customers report being most familiar with Energy Efficiency, with nearly nine in ten (89%) saying they are familiar with this energy resource option. More than six in ten customers say they are familiar with Hydro-Electric Power, Wind Power, Solar, and Demand Response (63-74%).

> Familiarity is lowest with Next Generation Coal, the Smart Grid, Biomass Power, and Next Generation Small-scale Nuclear with approximately one in four customers reporting they are familiar with these options (25%-29%).
Knowledge of Resources Currently Used for PGE’s Power Supply

Among Residential Customers

n=502

> A majority of Residential customers identify Hydro-electric Power (63%) as one of the top two resources PGE uses to supply electricity, followed by Natural Gas (39%), Conventional Coal (29%) and Wind Power (17%).

> No other resource is believed to among the top two resources currently used for PGE’s electricity supply by more than 7% of Residential customers.

Q5-Q6. Which one of these resources do you think currently accounts for the greatest / second greatest proportion of PGE’s power supply?

*List and item wording changes versus 2012; use caution when interpreting trends.
A majority of General Business customers identify Hydro-electric Power (74%) as one of the top two resources PGE uses to supply electricity, followed by Natural Gas (40%), Conventional Coal (25%) and Wind Power (14%). No other resource is believed to among the top two resources currently used for PGE’s electricity supply by more than 5% of General Business customers.
Awareness That Electricity Received from PGE is Generated from Renewable Resources (such as Wind, Solar, Biomass, Geothermal, or Hydro-electric)

> Two-thirds of Residential Customers believe that some portion of the power they receive from PGE is generated using renewable resources (66%).

> The proportion of General Business customers that believe their facility receives energy from renewable resources is much lower at 38%.

Awareness That Any Of The Electricity the Customer’s Home or Business Receives from PGE Is Generated Using Renewable Resources Such as Solar, Wind, Biomass, Geothermal, or Hydro-electric Power

<table>
<thead>
<tr>
<th></th>
<th>Residential</th>
<th>General Business</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>28%</td>
<td>39%</td>
</tr>
<tr>
<td>No</td>
<td>6%</td>
<td>23%</td>
</tr>
<tr>
<td>Not sure</td>
<td>66%</td>
<td>38%</td>
</tr>
</tbody>
</table>

Estimated Percentage of PGE Electricity That Comes From Renewable Sources (among customers who believe some energy is generated using renewables)

<table>
<thead>
<tr>
<th>Percentage Range</th>
<th>Residential</th>
<th>General Business</th>
</tr>
</thead>
<tbody>
<tr>
<td>10% or less</td>
<td>19%</td>
<td>22%</td>
</tr>
<tr>
<td>11% to 20%</td>
<td>21%</td>
<td>24%</td>
</tr>
<tr>
<td>21% to 30%</td>
<td>18%</td>
<td>19%</td>
</tr>
<tr>
<td>31% to 40%</td>
<td>9%</td>
<td>6%</td>
</tr>
<tr>
<td>41% to 50%</td>
<td>8%</td>
<td>2%</td>
</tr>
<tr>
<td>51% to 70%</td>
<td>5%</td>
<td>0%</td>
</tr>
<tr>
<td>71% to 100%</td>
<td>5%</td>
<td>16%</td>
</tr>
<tr>
<td>Not sure</td>
<td>15%</td>
<td>11%</td>
</tr>
<tr>
<td>Mean</td>
<td>29.4%</td>
<td>27.6%</td>
</tr>
</tbody>
</table>
Appendix C: Additional Resource Allocation Exercise Results

Electricity Resource Allocation Block 2 – *Natural Gas and Specific Renewables*

Electricity Resource Allocation Block 3 – *Renewables Only*
Customers’ Long-Term Energy Resource Plans:
Electricity Resource Allocation Block 2 – *Natural Gas and Specific Renewables*

> When presented with a menu of electricity resources consisting of Natural Gas Power Plants and five specific types of Renewable Power Plants, customers overwhelmingly prefer a mix dominated by renewable resources, even when Natural Gas is the least expensive option.

Baseline: All Costs Equal (Cost Points=100)

Residential
- Natural Gas-Fired Power Plants: 14%
- Wind Power Plants: 22%
- Solar Power Plants: 24%
- Biomass Power Plants: 7%
- Geothermal Power Plants: 18%
- Hydro-Electric Power Plants: 15%

General Business
- Natural Gas-Fired Power Plants: 21%
- Wind Power Plants: 17%
- Solar Power Plants: 20%
- Biomass Power Plants: 6%
- Geothermal Power Plants: 17%
- Hydro-Electric Power Plants: 19%
Customers’ Long-Term Energy Resource Plans: Electricity Resource Allocation Block 3 – Renewables Only

> When presented with five specific Renewable Power Plant options only and all costs are equal, Residential customers allocate the most of their long-term power plan to Solar Power Plants (28%), while General Business customers give Hydro-Electric Power Plants their highest allocation (27%).

> Biomass is the least popular resource option among both segments in this scenario.
Appendix D: Respondent Profiles

Residential Demographics

General Business and Key Accounts Firmographics
Demographics by segment

<table>
<thead>
<tr>
<th></th>
<th>Total</th>
<th>Simply Service (A)</th>
<th>Totally Tech (B)</th>
<th>Innovative Investors (C)</th>
<th>Continually Connected (D)</th>
<th>Sensible Savers (E)</th>
</tr>
</thead>
<tbody>
<tr>
<td>n= 502</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gender</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>47%</td>
<td>48%</td>
<td>53%</td>
<td>50%</td>
<td>35%</td>
<td>41%</td>
</tr>
<tr>
<td>Female</td>
<td>53%</td>
<td>52%</td>
<td>47%</td>
<td>50%</td>
<td>65%</td>
<td>59%</td>
</tr>
<tr>
<td>Homeowner or Renter</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Homeowner</td>
<td>63%</td>
<td>29%</td>
<td>71%</td>
<td>91%</td>
<td>34%</td>
<td>56%</td>
</tr>
<tr>
<td>Renter</td>
<td>36%</td>
<td>71%</td>
<td>29%</td>
<td>8%</td>
<td>63%</td>
<td>44%</td>
</tr>
<tr>
<td>Education</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H. S. or less</td>
<td>3%</td>
<td>4%</td>
<td>3%</td>
<td>2%</td>
<td>2%</td>
<td>6%</td>
</tr>
<tr>
<td>Some college Voc./Tech. Sch.</td>
<td>33%</td>
<td>29%</td>
<td>29%</td>
<td>23%</td>
<td>47%</td>
<td>47%</td>
</tr>
<tr>
<td>College graduate/post graduate</td>
<td>63%</td>
<td>67%</td>
<td>67%</td>
<td>73%</td>
<td>51%</td>
<td>46%</td>
</tr>
<tr>
<td>Income</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Less than $25k</td>
<td>7%</td>
<td>11%</td>
<td>5%</td>
<td>1%</td>
<td>23%</td>
<td>4%</td>
</tr>
<tr>
<td>$25K-$50K</td>
<td>14%</td>
<td>15%</td>
<td>12%</td>
<td>6%</td>
<td>28%</td>
<td>15%</td>
</tr>
<tr>
<td>$50K-$75K</td>
<td>21%</td>
<td>33%</td>
<td>21%</td>
<td>17%</td>
<td>14%</td>
<td>23%</td>
</tr>
<tr>
<td>$75K+</td>
<td>58%</td>
<td>41%</td>
<td>62%</td>
<td>76%</td>
<td>34%</td>
<td>57%</td>
</tr>
<tr>
<td>Age</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18-24</td>
<td>4%</td>
<td>12%</td>
<td>6%</td>
<td>0%</td>
<td>5%</td>
<td>1%</td>
</tr>
<tr>
<td>25-34</td>
<td>17%</td>
<td>31%</td>
<td>26%</td>
<td>6%</td>
<td>15%</td>
<td>11%</td>
</tr>
<tr>
<td>35-44</td>
<td>20%</td>
<td>20%</td>
<td>26%</td>
<td>16%</td>
<td>23%</td>
<td>11%</td>
</tr>
<tr>
<td>45-54</td>
<td>19%</td>
<td>14%</td>
<td>16%</td>
<td>22%</td>
<td>26%</td>
<td>16%</td>
</tr>
<tr>
<td>55-64</td>
<td>22%</td>
<td>14%</td>
<td>16%</td>
<td>25%</td>
<td>21%</td>
<td>31%</td>
</tr>
<tr>
<td>65 or over</td>
<td>18%</td>
<td>9%</td>
<td>10%</td>
<td>30%</td>
<td>9%</td>
<td>29%</td>
</tr>
<tr>
<td>Average Monthly Bill</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Less than $50</td>
<td>18%</td>
<td>19%</td>
<td>27%</td>
<td>16%</td>
<td>10%</td>
<td>18%</td>
</tr>
<tr>
<td>$50 to $64.99</td>
<td>18%</td>
<td>32%</td>
<td>20%</td>
<td>14%</td>
<td>14%</td>
<td>14%</td>
</tr>
<tr>
<td>$65 to $84.99</td>
<td>20%</td>
<td>19%</td>
<td>25%</td>
<td>19%</td>
<td>19%</td>
<td>17%</td>
</tr>
<tr>
<td>$85+</td>
<td>43%</td>
<td>30%</td>
<td>28%</td>
<td>51%</td>
<td>57%</td>
<td>51%</td>
</tr>
<tr>
<td>Mean bill amount in dollars</td>
<td>$89.5</td>
<td>$72.4</td>
<td>$79.8</td>
<td>$97.2</td>
<td>$94.9</td>
<td>$99.7</td>
</tr>
</tbody>
</table>
Firmographics by Segment

<table>
<thead>
<tr>
<th></th>
<th>General Business</th>
<th>Medium Business (A)</th>
<th>Large Business (B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>186</td>
<td>135</td>
<td>51</td>
</tr>
</tbody>
</table>

Length of Current Employment

<table>
<thead>
<tr>
<th></th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Less than 6 months</td>
<td>3%</td>
</tr>
<tr>
<td>6 months to less than 1 year</td>
<td>1%</td>
</tr>
<tr>
<td>1 year to less than 5 years</td>
<td>24%</td>
</tr>
<tr>
<td>5 years or more</td>
<td>70%</td>
</tr>
</tbody>
</table>

Proportion of Operating Costs Accounted for by Electricity Costs

<table>
<thead>
<tr>
<th></th>
<th>Less than 1%</th>
<th>1% to less than 5%</th>
<th>5% to less than 10%</th>
<th>10% to less than 20%</th>
<th>20% or more</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Business</td>
<td>11%</td>
<td>36%</td>
<td>23%</td>
<td>13%</td>
<td>6%</td>
</tr>
<tr>
<td>Medium Business (A)</td>
<td>12%</td>
<td>34%</td>
<td>22%</td>
<td>13%</td>
<td>7%</td>
</tr>
<tr>
<td>Large Business (B)</td>
<td>10%</td>
<td>43%</td>
<td>25%</td>
<td>12%</td>
<td>2%</td>
</tr>
</tbody>
</table>

Number of Locations Served by PGE

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Business</td>
<td>35%</td>
<td>23%</td>
<td>13%</td>
<td>23%</td>
</tr>
<tr>
<td>Medium Business (A)</td>
<td>36%</td>
<td>24%</td>
<td>14%</td>
<td>19%</td>
</tr>
<tr>
<td>Large Business (B)</td>
<td>31%</td>
<td>18%</td>
<td>8%</td>
<td>33%</td>
</tr>
</tbody>
</table>

Number of Years as Customer

<table>
<thead>
<tr>
<th></th>
<th>Less than 5 years</th>
<th>5 to less than 10 years</th>
<th>10 or more years</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Business</td>
<td>6%</td>
<td>10%</td>
<td>81%</td>
</tr>
<tr>
<td>Medium Business (A)</td>
<td>6%</td>
<td>11%</td>
<td>80%</td>
</tr>
<tr>
<td>Large Business (B)</td>
<td>8%</td>
<td>6%</td>
<td>82%</td>
</tr>
</tbody>
</table>
Contacts

Ron Newheiser
Senior Director | Research & Consulting
503-416-8573
Ron.Newheiser@marketstrategies.com

James Kandell
Lead Analyst, Energy
503-416-8544
James.Kandell@marketstrategies.com

Kevin Dixon
Senior Analyst, Energy
503-416-8520
Kevin.Dixon@marketstrategies.com

Marketstrategies.com
FreshMR.com